A geometric proof of Stallings’ theorem on groups with more than one end
نویسنده
چکیده
Stallings showed that a finitely generated group which has more than one end splits as an amalgamated free product or an HNN extension over a finite subgroup. Dunwoody gave a new geometric proof of the theorem for the class of almost finitely presented groups. Here we adapt the method to the class of finitely generated groups using Sageev’s generalisation of Bass Serre theory concerning group pairs with more than one end.
منابع مشابه
Cutting up graphs revisited - a short proof of Stallings' structure theorem
This is a short proof of the existence of finite sets of edges in graphs with more than one end, such that after removing them we obtain two components which are nested with all their isomorphic images. This was first done in “Cutting up graphs” [4]. Together with a certain tree construction and some elementary Bass–Serre theory this yields a combinatorial proof of Stallings’ theorem on the str...
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملGroups with one conjugacy class of non-normal subgroups - a short proof
For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002